The Synthesis of 2,3,4,6-Tetrahydro-5-hydroxy-2,6-dimethyl-1H-pyrido-[4,3-b]carbazole ; Attempts to synthesise 2,3,4,10-Tetrahydro-5-hydroxy-2-methyl-1H-pyrido[3,4-b]carbazole

By Silvio J. Martinez and John A. Joule,* Chemistry Department, University of Manchester, Manchester M13 9PL

Abstract

The synthesis of 1-methyl-3-(dimethylaminomethyl)indol-2-yl, 3-(dimethylaminomethyl)indol-2-yl, 2-(dimethylaminomethyl) indol-3-yl, and 2-methoxymethylindol-3-yl 1,2,5,6-tetrahydro-1-methylpyridin-4- yl ketones is described. Although each of these could be isomerised to the corresponding cyclic enamine (2-piperideine), only in the first case could the result of intramolecular β-alkylation of the enamine be obtained, i.e. 2,3,4,6-tetrahydro-5-hydroxy-2,6-dimethyl-1H-pyrido [4.3-b] carbazole (9a).

In previous papers ${ }^{\mathbf{1 , 2}}$ in this series we have demonstrated a means for generating six-membered cyclic enamines (2-piperideines) by isomerisation of 4 -acyl- $1,2,5,6$ tetrahydropyridines (1) into 4-acyl-1,4,5,6-tetrahydro-

pyridines $\dagger(2)$. The enamine (2) was then used by conversion into a β-protonated immonium form (3), which served as an intramolecular electrophile to achieve formation of the target cyclic system. Here we report ${ }^{4}$ an extension of this theme, and the utilisation of cyclic enamine, generated in this way, as a nucleophile in the intramolecular β-alkylation $[\rightarrow(4)]$ to effect formation of the required ring system.

RESULTS AND DISCUSSION

Considerable synthetic interest has been shown ${ }^{5}$ in synthesis of the ellipticine (5a) system on account of its antineoplastic activity. ${ }^{6}$ The phenolic 9 -hydroxyanalogue (5b) is reported as being more active ${ }^{7}$ than the parent. We set out, then, to synthesise ellipticine analogues with a phenolic hydroxy function elsewhere in the system, on ring c. Only one other group has described ${ }^{8}$ the synthesis of ellipticine types with an alternatively placed hydroxy (on ring D).

The synthetic strategy envisioned was to generate

[^0]from (6) an enamine (7) which, with a leaving-groupsubstituted one-carbon unit on the indole, might close [arrows on (7)] and tautomerise to a ring-c phenol (8). A closely similar synthetic strategy has been utilised ${ }^{9}$ by French workers in parallel studies, in this case to produce ellipticine itself. Here we describe first the development of a successful route to the phenol (9a) and secondly our failure to bring about a parallel synthesis of an alternative ring-c phenolic system, as in (10).

Since the intermolecular nucleophilic displacement of amine from gramine systems by carbon nucleophiles is a very well established ${ }^{\mathbf{1 0}}$ process, this was the leaving group chosen [$6 ; \mathrm{X}=\mathrm{NMe}_{2}$] in the first instance for the present investigation. In the first attempt to prepare a suitable (6) the conjugated ketone (11a) was subjected to the usual Mannich conditions; however, either no reac-

(5)

R
a: H
b: OH

(8)
tion occurred or, under more vigorous conditions, only water-soluble products were obtained. This result was not surprising, since the substrate is an acylindole and is thus deactivated relative to a simple indole. However,
we were able to show that its dihydro-derivative (11b) underwent indole β-substitution with the Mannich reagent smoothly to give (11c).

(9)

R
a: H
b: Ac

(11)

	R^{1}	R^{2}	R^{3}
a:	0	H	H
b:	0	H	$\mathrm{H}, 3,4-\mathrm{din}$
c :	O	H	$\mathrm{CH}_{2} \mathrm{NMe}_{2}$
d:	H, OH	H	H
e :	H, OH	H	$\mathrm{CH}_{2} \mathrm{NMe}_{2}$
f:	$\mathrm{OCH} \mathrm{CH}_{2} \mathrm{O}$	H	H
g:	$\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}$	H	$\mathrm{CH}_{2} \mathrm{NMe}_{2}$
h:	0	H	$\mathrm{CH}_{2} \mathrm{NMe}_{2}$
i:	$\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}$	Me	H
j:	$\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}$	Me	$\mathrm{CH}_{2} \mathrm{NMe}_{2}$
k:	O	Me	$\mathrm{CH}_{2} \mathrm{NMe}_{2}$

The introduction of the required dimethylaminomethyl group was easily achieved using the alcohol (11d), but all the many efforts to oxidise the hydroxy group of the product (lle) met with failure, despite the known easy oxidative transformation of (11d) into (11a). A more roundabout route therefore had to be taken to the desired conjugated ketone. The ethylene acetal ${ }^{11}$ (12a) was quaternised with methyl iodide, reduced with sodium borohydride, and the resulting acetal (11f) made to undergo the Mannich reaction. The product (11 g) could be hydrolysed to the desired conjugated ketone (11h).

All attempts to achieve the desired $\mathrm{C}-\mathrm{C}$ bond resulted only in the formation of the N-cyclised compound (13). Since this must have arisen via the desired enamine intermediate, it seemed that the problem to be overcome
was the efficient competition by the alternative closure pathway. To prevent this, and thus test the synthetic strategy, the acetal (12a) was first N^{a}-methylated [to give (12b)], using sodium hydride as base and 1 mol of methyl iodide, and then carried through an exactly analogous sequence, $(12 \mathrm{~b}) \rightarrow(11 \mathrm{i}) \rightarrow(11 \mathrm{j}) \rightarrow(11 \mathrm{k})$.

Treatment of the N^{a}-methyl conjugated ketone (11 k) with de-oxygenated 50% aqueous acetic acid gave the desired, though somewhat unstable, phenol (9a), which was best handled and characterised as its stable O-acetate $(9 b)$. The key spectral features supporting the structure of the acetate are: a u.v. absorption very similar to that of l-hydroxycarbazole (the absorption of the phenol showed a bathochromic shift in alkaline solution); a singlet at $\tau 2.40$ for the C-11 proton (the C- 10 hydrogen showed a doublet, $J 6 \mathrm{~Hz}$, at $\tau 2.05$) and a singlet at $\tau 6.23$ for the C-12 methylene; and the phenolic ester carbonyl at $1770 \mathrm{~cm}^{-1}$.

Although gramine-type displacements from the indole α-position are less favoured, nevertheless there are precedents for the displacement of both methoxy ${ }^{12}$ and dimethylamino-groups, ${ }^{13}$ both in protonated and quaternised forms. In planning a synthesis of (10) by an 'upside-down' version of the successful sequence described above, it was evident that one problem which could not present itself was competitive cyclisation onto N^{a}, and accordingly no N^{a} protection was undertaken in this series of reactions. Two possible leaving groups $\left[\mathrm{X}=\mathrm{OMe}\right.$ and NMe_{2} in (6) $]$ were examined: in the event neither was successful.

(14)
$R^{1} \quad R^{2}$
a: $\mathrm{CH}_{2} \mathrm{OMe} \mathrm{H}, \mathrm{OH}$

R^{1}	R^{2}	R^{3}
a : $\mathrm{CH}_{2} \mathrm{OMe}$	H, OH	H
b: $\mathrm{CH}_{2} \mathrm{OMe}$	0	H
c: H	H, OH	H
d: H	H, OH	$\mathrm{CH}_{2} \mathrm{NMe}_{2}$
e: $\mathrm{CH}_{2} \mathrm{NMe}_{2}$	0	H
f. $\mathrm{CH}_{2} \mathrm{NMe}_{2}$	H, OH	H

2-Methoxymethylindole ${ }^{14}$ was condensed * with pyridine-4-carbaldehyde in sodium hydroxide, the product (14a) was quaternised and reduced in the usual way and the resulting alcohol (15a) oxidised with manganese dioxide to the conjugated ketone (15b). Treatment with 50% aqueous acetic acid (see above), or successively with sodium methoxide in methanol and then acid, gave no phenolic product. It was established ${ }^{3}$ that the base treatment did indeed isomerise (15b) into the enamine (16a).

In the first attempt to prepare a 2 -dimethylamino-

[^1]methylindole analogue, the alcohol (14b) was converted, in the usual way, to the piperideine (15 c). However, as anticipated ${ }^{\mathbf{1 0}}$ Mannich condensation, which could not be carried out in the usual acidic conditions because of the sensitivity of the indol-3-ylmethanol group, occurred on the indolic nitrogen when milder conditions were employed, generating (15d). The synthesis clearly had to start with the α-substituent already present. Isogramine ${ }^{16}$ was condensed with pyridine-4-carbaldehyde to give (14c); oxidation of the alcoholic product gave the ketone (14d). Selective quaternisation of the pyridine nitrogen was achieved by forming the mono-hydrochloride (at the more basic dimethylaminomethyl group) followed by reaction with methyl iodide. Borohydride reduction over a short period gave mainly the ketone (15e) together with some of the alcohol (15f).

(16)

R
a: $\mathrm{CH}_{2} \mathrm{OMe}$
b: $\mathrm{CH}_{2} \mathrm{NMe}_{2}$
The ketone (15 e) could be isomerised ${ }^{3}$ to the enamine (16b) by treatment with sodium methoxide in methanol, but neither the enamine (16 b) nor the starting ketone (15e), on treatment with acetic acid, gave any phenolic product.

This failure must be attributed to the recognised ${ }^{\mathbf{1 0}}$ lower gramine-type reactivity at the indole α-position compared to the β-position. The effect in this case is aggravated by the greater conjugation of the indole nitrogen with the 3 -acyl-carbonyl than with the 2 -acylcarbonyl; thus the electron release required for the amine elimination is even less for 3 -acyl- α-gramine than in a simpler α-gramine.

FXPERIMENTAL

General.-Organic extracts were dried with anhydrous magnesium sulphate. Extracts and reaction mixtures were evaporated under reduced pressure ($c a .20 \mathrm{mmHg}$) using a rotary evaporator and a bath temperature of $c a .60$ ${ }^{\circ} \mathrm{C}$. Preparative layer chromatography (p.l.c.) was carried out using Merck silica gel 60 plates. Unless otherwise specified, u.v. spectra were measured in ethanol, i.r. spectra in chloroform, and n.m.r. spectra in deuteriochloroform solutions. Only clearly distinguished and unambiguously assignable absorptions are given for i.r. and n.m.r. spectra, in particular those which are of greatest importance for establishment of structure. Only ions of intensity $>10 \%$ of base peak are given for mass spectra, except where a less intense ion is of particular importance for structure establishment.

3-(Dimethylaminomethyl)indol-2-yl 1-Methylpiperidin-4-yl Ketone (11c).-The ketone (11b) ${ }^{11}(15 \mathrm{mg})$ was reacted with formaldehyde ($0.09 \mathrm{ml}, 36 \%$), dimethylamine ($0.15 \mathrm{ml}, 30 \%$),
acetic acid (1 ml), and dioxan (1 ml) at reflux for 1 h . The cooled solution was basified and extracted with chloroform to give the crude product (14 mg), purified by p.l.c. [$\mathrm{MeOH}-$ NEt_{3} (98:2)] to give the Mannich product (11c) (12 mg); $\lambda_{\text {max }} 237$ and $315 \mathrm{~nm}\left(\log \varepsilon 4.15\right.$ and 4.3); $\nu_{\text {max. }} 3450 \mathrm{~s}$ and $1645 \mathrm{~s} \mathrm{~cm}^{-1}$; $\tau 0.52\left(1 \mathrm{H}\right.$, br s, NH), $6.24\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{NMe}_{2}\right)$, $7.72\left(3 \mathrm{H}, \mathrm{s}\right.$, piperidine-NMe), and $7.76\left(6 \mathrm{H}, \mathrm{s}, \mathrm{NMe}_{2}\right) ; m / e$ $299\left(41 \%, M^{+}\right), 254$ (16), 184 (12), 173 (13), 130 (10), 96 (100), 70 (14), and 58 (18) (Found: $M^{+}, 299.2004 . \mathrm{C}_{18} \mathrm{H}_{25}{ }^{-}$ $\mathrm{N}_{3} \mathrm{O}$ requires $M, 299.1997$).
[3-(Dimethylaminomethyl)indol-2-yl]-1,2,5,6-tetrahydro-1-methylpyridin-4-ylmethanol (11e).-The alcohol (11d) ${ }^{1}$ (900 mg) in dioxan (7 ml) was added to a mixture of formaldehyde ($0.61 \mathrm{ml}, 36 \%$), dimethylamine ($0.87 \mathrm{ml}, 30 \%$), acetic acid (7 ml), and dioxan (7 ml). After 2 h at room temperature the solvent was evaporated off and the residue basified and extracted with ethyl acetate to give the Mannich alcohol (11e) (700 mg) as a brown gum; $\lambda_{\text {max. }}$ 224, 276, 283, and $290 \mathrm{~nm}\left(\log \varepsilon 4.26,3.75,3.78\right.$, and 3.72); $\nu_{\text {max. }} 3420 \mathrm{~m}$ cm^{-1}; $\tau 0.86(1 \mathrm{H}, \mathrm{brs}, \mathrm{NH}), 3.24(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 4.16(1 \mathrm{H}$, $\mathrm{m}, \mathrm{HC}=\mathrm{C}), 4.78(1 \mathrm{H}, \mathrm{s}, \mathrm{CHOH}), 6.42\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{NMe}_{2}\right), 7.70$ ($3 \mathrm{H}, \mathrm{s}$, piperideine-NMe), and $7.78\left(6 \mathrm{H}, \mathrm{s}, \mathrm{NMe}_{2}\right.$) ; $m / e 299$ ($35 \%, M^{+}$), 287 (15), 253 (100), 254 (84), 236 (51), 211 (24), 194 (62), 124 (42), 129 (37), 96 (57), and 58 (60) (Found: M^{+}, 299.1996. $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}$ requires $M, 299.1997$).

Indol-2-yl 1,2,5,6-Tetrahydro-1-methylpyridin-4-yl Ketone Ethylene Acetal (11f).-The acetal (12a) ${ }^{11}$ (1.18 g) was reacted with methyl iodide (10 ml) in benzene (100 ml) at reflux overnight. The resulting solid methiodide (1.84 g) was reduced, without purification, with an excess of sodium borohydride in methanol $(120 \mathrm{ml})$ for 20 min at room temperature. Evaporation, addition of water, and extraction with ethyl acetate gave the piperideine acetal (11f) ($1.19^{\circ} \mathrm{g}$), m.p. $171-172^{\circ} \mathrm{C}$ (from EtOAc); $\lambda_{\text {max. }}$ 222, 281, and 290 nm (log $\varepsilon 4.06,3.93$, and 3.81); $v_{\text {max. }} 3460 \mathrm{sm}^{-1} ; \tau 1.65(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\mathrm{NH}), 3.45(1 \mathrm{H}$, br s, indole $3-\mathrm{H})$, $4.1(1 \mathrm{H}, \mathrm{m}, \mathrm{HC=C}), 5.95$ $\left(4 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$, and $7.6(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}) ; m / e 284$ ($25 \%, M^{+}$), 239 (10), 188 (100), 167 (63), 144 (33), 96 (67), 85 (25), 83 (33), and 70 (12) (Found: $M^{+}, 284.1524$; C, 71.8; $\mathrm{H}, 7.0 ; \mathrm{N}, 9.9 \%$. $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires $M, 284.1524$; C, 71.8; H, 7.0; N, 9.8\%).

3-(Dimethylaminomethyl)indol-2-yl 1,2,5,6-Tetrahydro-1-methylpyridin-4-yl Ketone Ethylene Acetal (11g).-The acetal (1lf) (873 mg) was treated with formaldehyde (0.52 $\mathrm{ml}, 30 \%)$, dimethylamine ($0.75 \mathrm{ml}, 30 \%$), and acetic acid $(6 \mathrm{ml})$ in dioxan $(16 \mathrm{ml})$ for 1 d at $56{ }^{\circ} \mathrm{C}$. The solvent was evaporated off and the residue basified and extracted with ethyl acetate to give the Mannich acetal (11g) (1.05 g) as crystals, m.p. $166-167^{\circ} \mathrm{C}$; $\lambda_{\text {max. }} 221,274,282$, and 290 nm $\left(\log \varepsilon 4.45,3.92,3.94\right.$, and 3.86) ; $\nu_{\max } 3460 \mathrm{~s} \mathrm{~cm}^{-1} ; \tau 1.7$ ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}$), $4.25(1 \mathrm{H}, \mathrm{m}, \mathrm{HC}=\mathrm{C}), 6.0\left(4 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OCH}_{2}-\right.$ $\left.\mathrm{CH}_{2} \mathrm{O}\right), 6.3\left(2 \mathrm{H}, \mathrm{s}, \mathrm{C}_{2} \mathrm{NMe}_{2}\right), 7.65(3 \mathrm{H}, \mathrm{s}$, piperideine NMe), and $7.70\left(6 \mathrm{H}, \mathrm{s}, \mathrm{NMe}_{2}\right)$; $m / e 341\left(28 \%, M^{+}\right), 297(85)$, 296 (100), 295 (64), 255 (33), 254 (43), 253 (36), 252 (47), 251 (41), 224 (76), 223 (71), 211 (38), 210 (47), 209 (35), 203 (33), 202 (36), 96 (76), 94 (79), 58 (66), and 44 (92) (Found: M^{+}, 341.2102 ; $\mathrm{C}, 70.3 ; \mathrm{H}, 7.9 ; \mathrm{N}, 12.3 \% . \quad \mathrm{C}_{20} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{2}$ requires $M, 341.2103 ; \mathrm{C}, 70.4 ; \mathrm{H}, 7.9 ; \mathrm{N}, 12.3 \%$).

3-(Dimethylaminomethyl)indol-2-yl 1,2,5,6-Tetrahydro-1-methylpyridin-4-yl Ketone (11h).-The acetal (11g) (459 mg) was hydrolysed with hydrochloric acid ($2 \mathrm{~N}, 8 \mathrm{ml}$) at $60^{\circ} \mathrm{C}$ overnight. Basification and extraction with ethyl acetate gave the ketone (11 h) $(377 \mathrm{mg})$ as a solid, m.p. $135-136{ }^{\circ} \mathrm{C}$ (from EtOAc); $\lambda_{\text {max. }} 217,243$, and $321 \mathrm{~nm}(\log \varepsilon 4.44,4.19$, and 4.15) ; $\nu_{\text {max. }} 3460 \mathrm{~m}$ and $1630 \mathrm{~s} \mathrm{~cm}^{-1}$; $\tau 0.84(1 \mathrm{H}, \mathrm{br} \mathrm{s}$,
$\mathrm{NH}), 3.48(1 \mathrm{H}, \mathrm{m}, \mathrm{HC}=\mathrm{C}), 6.28\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{NMe}_{2}\right), 7.64$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}$), and $7.86\left(6 \mathrm{H}, \mathrm{s}, \mathrm{NMe}_{2}\right)$; $m / e 297\left(13 \%, M^{+}\right)$, 252 (27), 251 (29), 210 (23), 96 (52), 94 (23), 91 (14), 81 (20), 71 (33), 58 (31), and 57 (42) (Found: $M^{+}, 297.1847$; C, 72.9 ; $\mathrm{H}, 7.8 ; \mathrm{N}, 13.8 \% . \mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}$ requires $M, 297.1841$; C, 72.7; H, 7.7; N, 14.1%).

7-(Dimethylaminomethyl)-1,5-methano-2-methyl-2,3,4,5tetrahydro $[1,3]$ diazocino $[1,8-\mathrm{a}]$ indole- $6(1 \mathrm{H})$-one (13).-The ketone (11 h) (108 mg) was treated with aqueous acetic acid $(50 \%, 2 \mathrm{ml})$ at reflux for 1.5 h . The solution was made basic and extracted with ethyl acetate to give a gum (105 mg), which was purified by p.l.c. $\left[\mathrm{CHCl}_{3}-\mathrm{NEt}_{3}(96: 4)\right]$ to give the cyclic ketone (13) (85 mg) as an amorphous solid; $\lambda_{\text {max. }} 212,241$, and $320 \mathrm{~nm}\left(\log \varepsilon 4.45,4.35\right.$, and 4.40); $\nu_{\text {max. }}$ $1670 \mathrm{~s} \mathrm{~cm}^{-1} ; \tau 4.5(1 \mathrm{H}, \mathrm{m}, \mathrm{NCHN}), 5.86,5.94(2 \mathrm{H}, \mathrm{s} \times \mathrm{d}$, $\left.J 12 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{NMe}_{2}\right)$, and $7.6(9 \mathrm{H}, \mathrm{s}$, piperidine NMe and $\mathrm{CH}_{2} \mathrm{~N} M e_{2} ; m / e 297\left(28 \%, M^{+}\right), 252(43), 251$ (40), 227 (24), 223 (10), 96 (100), 94 (28), and 44 (30) (Found: $M^{\text { }}$ spectrometry, 297.1838; $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}$ requires $M, 297.1841$).

1-Methylindol-2-yl Pyridin-4-yl Ketone Ethylene Acetal (12b).-The acetal (12a) ${ }^{11}(4.34 \mathrm{~g})$ was deprotonated with sodium hydride (0.75 g) in DMF (60 ml) at room temperature for 0.5 h ; a yellow solid precipitated. Methyl iodide (2.46 g) was added quickly and the solution stirred for 3 min . Dilution with water was followed by extraction with ether to give the N^{a}-methyl acetal (12b) (4.31 g) as brownish crystals, m.p. $136-137{ }^{\circ} \mathrm{C}$ (from EtOH); $\lambda_{\text {max. }} 225,268$, 285 (sh), and 285 (sh) nm; $\tau 1.35(2 \mathrm{H}, \mathrm{d}, J 7 \mathrm{~Hz}$, pyridine $\alpha-\mathrm{H}), 3.40(1 \mathrm{H}, \mathrm{s}$, indole $3-\mathrm{H})$, $5.82\left(4 \mathrm{H}\right.$, br s, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$, and $6.40\left(3 \mathrm{H}, \mathrm{s}\right.$, indole NMe); $m / e 280\left(35 \%, M^{+}\right), 202(100)$, 158 (34), 150 (11), 106 (19), and 89 (22) (Found: M^{+}, 280.1212. $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires $M, 280.1208$).

1-Methylindol-2-yl 1,2,5,6-Tetrahydro-1-methylpyridin-4$y l$ Ketone Ethylene Acetal (11i).-The acetal (12b) (4.3 g) was reacted with excess of methyl iodide in toluene (100 ml) at reflux for 4 h . The methiodide precipitated and was filtered and used without further purification for the next step, which involved reduction with excess of sodium borohydride in methanol at room temperature for 1 h . The solvent was evaporated and the residue partitioned between water and chloroform to give the N^{a}-methylpiperideine acetal (11i) $(4.49 \mathrm{~g})$ as a gum; $\lambda_{\text {max. }} 224,265,282$, and $290(\mathrm{sh}) \mathrm{nm}$; $\tau 3.35(1 \mathrm{H}, \mathrm{s}$, indole $3-\mathrm{H}), 4.31(1 \mathrm{H}, \mathrm{m}, \mathrm{HC}=\mathrm{C}), 5.95(4 \mathrm{H}$, br s, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 6.27(3 \mathrm{H}, \mathrm{s}$, indole 1-Me), and $7.62(3 \mathrm{H}$, s , piperideine NMe) ; $m / e 298\left(21 \%, M^{+}\right)$, 225 (10), 202 (100), 167 (54), 158 (35), 132 (19), and 96 (38) (Found: M^{+}, 298.1681. $\quad \mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires $M, 298.1684$).

1-Methyl-3-(dimethylaminomethyl)indol-2-yl 1,2,5,6-Tetrahydro-1-methylpyridin-4-yl Ketone Ethylene Acetal (11j).-The acetal (11i) (3.7 g) was reacted with dimethylamine ($30 \%, 30 \mathrm{ml}$) and formaldehyde ($40 \%, 18 \mathrm{ml}$) in acetic acid $(20 \mathrm{ml})$ at room temperature for 1 d . The solution was basified and extracted with ethyl acetate to give the gramine acetal (11 j) $(3.83 \mathrm{~g})$ as a gum; $\lambda_{\text {max. }} 227,278$, $284(\mathrm{sh})$, and $295(\mathrm{sh}) \mathrm{nm}$; $\tau 4.52(1 \mathrm{H}, \mathrm{m}, \mathrm{HC}=\mathrm{C}), 6.00(4 \mathrm{H}$, br s, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 6.19\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{NMe}_{2}\right), 6.30(3 \mathrm{H}, \mathrm{s}$, indole 1-Me), 6.68 (3 H , s, piperideine NMe), and 7.72 (6 H , $\mathrm{CH}_{2} \mathrm{~N} M e_{2}$); $m / e 355\left(41 \%, M^{+}\right)$, 310 (100), 267 (35), 265 (35), 239 (62), 237 (50), 166 (64), and 94 (44) (Found: M^{+}, $355.2264 . \quad \mathrm{C}_{21} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{2}$ requires $M, 355.2260$).

1-Methyl-3-(dimethylaminomethyl)indol-2-yl
1,2,5,6-Tetrahydro-1-methylpyridin-4-yl Ketone (11k).-The acetal $(11 \mathrm{j})(197 \mathrm{mg})$ was hydrolysed with hydrochloric acid (5 N , 4 ml) at room temperature for 3 h . The product was extracted with ethyl acetate after basification, giving the gramine
ketone (11 k) (161 mg) as a pale yellow gum; $\tau_{\max } 243(\mathrm{sh})$, 313, and $350(\mathrm{sh}) \mathrm{nm}$; $\nu_{\text {max }} 1635 \mathrm{~s}, \mathrm{~cm}^{-1} ; \tau 3.50(1 \mathrm{H}, \mathrm{m}$, $\mathrm{HC}=\mathrm{C}), 6.30(3 \mathrm{H}, \mathrm{s}$, indole $1-\mathrm{Me})$, $6.42\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{NMe}_{2}\right)$, $7.59(3 \mathrm{H}, \mathrm{s}$, piperideine NMe$)$, and $7.85\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{~N} M e_{2}\right)$; $m / e 311$ ($1.5 \%, M^{+}$), 310 (2.5), 267 (26), 249 (43), 224 (74), 209 (21), 144 (26), 96 (26), 94 (30), and 58 (100) (Found: M^{+}, 311.1992. $\quad \mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}$ requires $M, 311.1998$).

2,3,4,6-Tetrahydro-5-hydroxy-2,6-dimethyl-1H-pyrido-[4,3-b]carbazole (9a) and the O-Acetate (9b).-The ketone (11 k) (265 mg , freshly prepared) was reacted in thoroughly deoxygenated aqueous acetic acid $(50 \%, 60 \mathrm{ml})$ at reflux for 20 h under nitrogen. Two routes could then be followed.
(a) The cooled solution was basified with potassium bicarbonate and extracted with ethyl acetate to give a black gum (130 mg) which was purified by p.l.c. [MeOH-EtOAc ($7: 3$)] to give the phenol (9a) (27 mg) as white crystals, m.p. $67-70^{\circ} \mathrm{C}$ [from EtOAc-MeOH (1:1)], $\lambda_{\text {max. }} 229,248$, 256,264 (sh), 286 (sh), 297, 337, and 349 nm ; $\tau_{\max }$. ($\mathrm{EtOH}-\mathrm{NaOH}$), 228, 269, 295 (sh). and 355 nm ; $\nu_{\text {max }} 3580$ $\mathrm{cm}^{-1} ; \tau 2.05(1 \mathrm{H}, \mathrm{d}, 10-\mathrm{H}), 2.5-2.93(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 5.88$ $(3 \mathrm{H}, \mathrm{s}, 6-\mathrm{Me}), 6.26\left(2 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{2} \mathrm{~N}\right), 6.95-7.30(4 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{ArCH} \mathrm{C}_{2} \mathrm{CH}_{2} \mathrm{~N}\right)$, and $7.30(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}) ; m / e 266\left(78 \%, M^{+}\right)$, 265 (83), 249 (24), and 223 (100) (Found: $M^{+}, 266.1421$. $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}$ requires M, 266.1419).
(b) The solvent was evaporated off and the residue reacted with acetic anhydride $(20 \mathrm{ml})$ at room temperature for 0.5 h . The acetic anhydride was evaporated off and the residue partitioned between ethyl acetate and aqueous potassium bicarbonate to give, after p.l.c. $\left[\mathrm{EtOAc}-\mathrm{Me}_{2} \mathrm{CO}(1: 1)\right]$ the phenolic acetate (66 mg), m.p. $166-167{ }^{\circ} \mathrm{C}$ (from EtOAc); $\lambda_{\text {max. }} 240,250$ (sh), 263, 286 (sh), 296, 317, 330, and 345 nm ($\log \varepsilon 4.52,4.36,4.25,3.86,4.16,3.56,3.60$, and 3.56); $\nu_{\text {max. }} 1770 \mathrm{~s} \mathrm{~cm}^{-1}$; $\tau 2.05(1 \mathrm{H}, \mathrm{d}, J 6 \mathrm{~Hz}, \mathrm{ArH}), 2.40(1 \mathrm{H}, \mathrm{s}$, $11-\mathrm{H}), 2.45-3.00(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 6.11(3 \mathrm{H}, \mathrm{s}, 6-\mathrm{Me}), 6.23$ ($2 \mathrm{H}, \mathrm{s}, \mathrm{C} \mathrm{H}_{2} \mathrm{NMe}$), $7.00-7.30\left(4 \mathrm{H}, \mathrm{m}, \mathrm{ArCH} \mathrm{H}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 7.50$ $(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me})$, and $7.57(3 \mathrm{H}, \mathrm{s}, \mathrm{OCOMe}) ; \mathrm{m} / e 308(75 \%$, M^{+}), 307 (70), 265 (66), 254 (65), 249 (33), 223 (100), 211 (41), 149) 30), and 96 (54) (Found: $M^{+}, 308.1521 . \mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires $M, 308.1525)$.

2-Methoxymethylindol-3-yl(pyridin-4-yl)methanol (14a).-2-Methoxymethylindole ${ }^{14}(2.2 \mathrm{~g})$ was reacted with pyridine-4-carbaldehyde (1.78 g) in methanol (11 ml) and aqueous sodium hydroxide $(30 \%, 4.47 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$, and then at room temperature for 1.5 h . A precipitate was formed, which was filtered and thoroughly washed with water to give the alcohol (14a) (3.6 g); $\lambda_{\text {max. }} 230,267$ (sh), 276 (sh), 283 and 291 (sh) nm; $\nu_{\text {max }} 3500-2500$ (br) cm ${ }^{-1}$; $\tau\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right]$ $-1.00(1 \mathrm{H}$, br s, NH), $1.56(2 \mathrm{H}, \mathrm{d}, J 7 \mathrm{~Hz}$, pyridine $\alpha-\mathrm{H})$, $3.92(1 \mathrm{H}, \mathrm{d}, J 3 \mathrm{~Hz}, \mathrm{CHOH}), 4.31(1 \mathrm{H}, \mathrm{br}$ s, OH$), 5.27$ and $5.38\left(2 \mathrm{H}, 2 \times \mathrm{d}, \mathrm{J} 13 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OMe}\right)$, and $6.63(3 \mathrm{H}, \mathrm{s}$, $\mathrm{OMe}) ; m / e 268\left(72 \%, M^{+}\right), 235(15), 219(60), 158$ (100), $130(40), 106$ (20), and 78 (13) (Found: $M^{+}, 268.1214$. $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires $M, 268.1211$).

2-Methoxymethylindol-3-yl-(1,2,5,6-tetrahydro-1-methyl-pyridin-4-yl)methanol (15a).-The alcohol (14a) (1.0 g) was quaternised with methyl iodide (15 ml) in ethyl acetate (100 ml) at reflux for 4 h . The methiodide (1.5 g), m.p. $173-$ $174{ }^{\circ} \mathrm{C}$, was collected and reduced without purification, with an excess of sodium borohydride in methanol for 0.5 h . The solvent was evaporated off and the residue partitioned between ethyl acetate and water to give the piperideine alcohol (15a) (720 mg) as a foam; $\lambda_{\text {max. }} 276$ (sh), 283, and $290(\mathrm{sh}) \mathrm{nm}(\log \varepsilon 3.84,3.85$, and 3.79$)$; $\nu_{\text {max. }} 3585 \mathrm{~m}$ and $3445 \mathrm{~m} \mathrm{~cm}^{-1}$; $\tau 1.36(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 4.10(1 \mathrm{H}, \mathrm{m}, \mathrm{HC}=\mathrm{C})$, $4.60(1 \mathrm{H}, \mathrm{s}, \mathrm{CHOH}), 4.39\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{OMe}\right), 6.62(3 \mathrm{H}, \mathrm{s}$,
$\mathrm{OMe})$, and 7.67 ($3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}$); $m / e 286\left(10 \%, M^{+}\right.$), 268 (33), 253 (10), 235 (33), 194 (40), 193 (35), 161 (41), 158 (42), 130 (66), and 96 (100) (Found: $M^{+}, 286.1677 . \mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires M, 286.1681).

2-Methoxymethylindol-3-yl 1,2,5,6-Tetrahydro-1-methyl-pyridin-4-yl Ketone (15b).-The alcohol (15a) (720 mg) was oxidised with manganese dioxide (3.6 g) in dry chloroform $(100 \mathrm{ml})$ at room temperature with stirring for 4 h . The oxidant was filtered off, and the filtrate refiltered through magnesium sulphate and evaporated to give the ketone (660 mg) as a gum; $\lambda_{\text {max. }} 248,270(\mathrm{sh})$, and $315 \mathrm{~nm} ; \nu_{\text {max }} 3440 \mathrm{~s}$ and $1620 \mathrm{~cm}^{-1} ; \tau 0.88(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 3.50(1 \mathrm{H}, \mathrm{m}$, $\mathrm{HC}=\mathrm{C}), 5.40\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{OMe}\right), 6.50(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, and 7.53 ($3 \mathrm{H}, \mathrm{s}$, piperideine NMe) ; $m / e 284\left(13 \%, M^{+}\right), 253(35), 210$ (20), 195 (14), 156 (12), 128 (13), 96 (100), and 94 (60) (Found: $M^{+}, 284.1530 . \quad \mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires $M, 284.1525$).

Indol-3-yl(pyridin-4-yl)methanol (14b).-Indole (27 g) in methanol (100 ml) was treated with aqueous sodium hydroxide ($10.8 \mathrm{~N}, 25 \mathrm{ml}$) and then, at $0{ }^{\circ} \mathrm{C}$, dropwise with pyridine-4-carbaldehyde (26 g). After 1 h at $0^{\circ} \mathrm{C}$ and a further 3 h at room temperature, the precipitate was filtered off to afford the alcohol (14b) (52 g), m.p. 184-185 ${ }^{\circ} \mathrm{C}($ from MeOH$) ; \lambda_{\text {max. }} 220,265,279$, and $288 \mathrm{~nm}(\log \varepsilon$ $4.32,3.72,3.73$, and 3.65) ; $v_{\text {max. }} 3440 \mathrm{~s}$ and $3400-2800(\mathrm{br})$ cm^{-1}; $\tau\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 0.93(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 1.50(2 \mathrm{H}, \mathrm{br}$ s, pyridine $\alpha-\mathrm{H}), 2.83(1 \mathrm{H}, \mathrm{s}$, indole $2-\mathrm{H}), 4.00(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$, and $4.20(1 \mathrm{H}, \mathrm{CHOH}) ; m / e 224\left(100 \%, M^{+}\right), 206(54), 205$ (50), 178 (10), 146 (63), 118 (54), 106 (18), and 79 (22) (Found: $M^{+}, 224.0948 . \quad \mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}$ requires $M, 224.0950$).

Indol-3-yl-(1,2,5,6-tetrahydro-1-methylpyridin-4-yl)-
methanol (15c).-To the pyridyl alcohol (14b) ${ }^{11}$ (7.15 g) suspended in ethyl acetate (150 ml) was added methyl iodide (37 g). After refluxing for 4 h , the solvent was decanted off and the residue crystallised from ethyl acetate to give the methiodide $(9.7 \mathrm{~g}), \mathrm{m} . \mathrm{p} .147-148{ }^{\circ} \mathrm{C}$. The methiodide (6.5 g) was reduced with sodium borohydride (excess) in methanol (100 ml) at room temperature for 0.5 h . The solvent was evaporated off and the residue partitioned between water and ethyl acetate to give the piperideine alcohol (15 c) (3.6 g), m.p. $133-135^{\circ} \mathrm{C}$ (from EtOAc); $\lambda_{\max }$ 247 (sh), 280 , and 289 nm ; $\nu_{\text {max. }} 3590(\mathrm{br})$ and $3480 \mathrm{~s} \mathrm{~cm}^{-1}$; $\tau 1.13(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 2.91(1 \mathrm{H}, \mathrm{s}$, indole $2-\mathrm{H}), 4.10(1 \mathrm{H}, \mathrm{m}$, $\mathrm{HC}=\mathrm{C}), 4.60(1 \mathrm{H}, \mathrm{s}, \mathrm{CHOH})$, and $7.68(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}) ; m / e$ $242\left(M^{+}, 18 \%\right), 224(58)$, and 96 (100) (Found: $M^{+}, 242.1415$. $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}$ requires $M, \mathbf{2 4 2 . 1 4 1 9)}$
[1-(Dimethylaminomethyl)indol-3-yl]-1,2,5,6-tetrahydro-1-methylpyridin-4-ylmethanol (15d).-The alcohol (15c) (208 mg) was treated with aqueous formaldehyde ($40 \%, 0.3 \mathrm{ml}$) dimethylamine ($25 \%, 0.7 \mathrm{ml}$), and acetic acid $(2.4 \mathrm{mg})$ in dioxan (5 ml) at room temperature for 2 d . The mixture was diluted with water and extracted with ethyl acetate after basification. The crude product (191 mg) was purified by p.l.c. $\left[\mathrm{MeOH}-\mathrm{CHCl}_{3}-\mathrm{NEt}_{3}\right.$ (10:90:4)]; $\lambda_{\max } 279$ (sh), 282 (sh), and 293 (sh) nm; $\nu_{\text {max. }} 3590 \mathrm{~cm}^{-1}$; $\tau 2.89(1 \mathrm{H}, \mathrm{s}$, indole $2-\mathrm{H}), 4.08(1 \mathrm{H}, \mathrm{m}, \mathrm{HC}=\mathrm{C}), 5.32\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{NMe}_{2}\right)$, $7.62(3 \mathrm{H}, \mathrm{s}$, piperideine NMe$)$, and $7.70\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{NMe}_{2}\right)$; $m / e 299\left(4 \%, M^{+}\right)$, 144 (16), 130 (23), and 96 (100) (Found: M^{+}, 299.1996. $\quad \mathrm{C}_{18} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}$ requires M, 299.1998).
[2-(Dimethylaminomethyl)indol-3-yl]pyridin-4-ylmethanol (14c).-Isogramine ${ }^{16}(550 \mathrm{mg})$ was treated with pyridine-4carbaldehyde (370 mg) in methanol (3 ml) containing aqueous sodium hydroxide ($30 \%, 0.1 \mathrm{ml}$) for 4 h at room temperature. Dilution with water and extraction with ethyl acetate gave the pyridine alcohol (14c) (800 mg) as an oil; $\lambda_{\text {max. }} 224,267(\mathrm{sh}), 275(\mathrm{sh}), 282$, and $291 \mathrm{~nm}(\log \varepsilon 4.3$,
3.74, 3.77, 3.78, and 3.70) ; $\nu_{\text {max }} 3450$ s and $3500-2600(\mathrm{br})$ cm^{-1}; $\tau 1.28(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH})$, $1.50(2 \mathrm{H}, \mathrm{d}, J 6 \mathrm{~Hz}$, pyridine $\alpha-\mathrm{H}), 3.83(1 \mathrm{H}, \mathrm{s}, \mathrm{CHOH}), 6.49$ and $6.77(2 \mathrm{H}, \mathrm{s} \times \mathrm{d}, J 14$ $\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{NMe}_{2}$), and $7.72\left(6 \mathrm{H}, \mathrm{s}, \mathrm{NMe}_{2}\right) ; m / e 279\left(50 \%, M^{+}\right)$, 265 (23), 264 (42), 263 (27), 250 (55), 249 (27), 233 (25), 207 (90), 193 (19), 158 (55), 130 (38), 106 (51), 103 (11), 78 (33), and 58 (100) (Found: $M^{+}, 281.1522 . \mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}$ requires $M, 281.1528)$.

2-(Dimethylaminomethyl)indol-3-yl Pyridin-4-yl Ketone (14d).-The alcohol (14c) (0.7 g) was oxidised with manganese dioxide (3.5 g) in chloroform (100 ml) at room temperature for 2.5 h . The oxidant was filtered off, and the filtrate passed through magnesium sulphate and then evaporated to give the pyridyl ketone (14d) (0.5 g), m.p. 199-200 ${ }^{\circ} \mathrm{C}$ (from MeOH); $\lambda_{\text {max. }} 269$ and 325 nm ($\log \varepsilon$ 3.92 and 3.75); $\nu_{\text {max }} 3400 \mathrm{~s}$ and $1625 \mathrm{~s} \mathrm{~cm}^{-1} ; \tau 1.18(2 \mathrm{H}, \mathrm{d}$, $J 7 \mathrm{~Hz}$, pyridine $\alpha-\mathrm{H}), 2.41(2 \mathrm{H}, \mathrm{d}, J 7 \mathrm{~Hz}$, pyridine $\beta-\mathrm{H})$, $6.10\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{NMe}_{2}\right.$), and $7.60\left(6 \mathrm{H}, \mathrm{s}, \mathrm{NMe}_{2}\right) ; m / e 279$ ($61 \%, M^{+}$), 264 (39), $250(22), 236$ (51), 235 (100), 219 (22), 207 (41), 173 (21), 158 (35), 137 (34), 130 (35), 123 (55), 122 (46), 108 (56), 106 (45), 78 (38), and 58 (67) (Found: M^{+}, 279.1370. $\quad \mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}$ requires $M, 279.1372$).

2-(Dimethylaminomethyl)indol-3-yl 1,2,5,6-Tetrahydro-1-methylpyridin-4-yl Ketone (15e) and [2-(Dimethylaminomethyl) indol-3-yl]-1,2,5,6-tetrahydro-1-methylpyridin-4-
y lmethanol (15f).-The ketone (14d) (325 mg) in methanolic hydrochloric acid ($0.1 \mathrm{~N}, 11.6 \mathrm{ml}$) was treated with methyl iodide $(8.3 \mathrm{ml})$ and then refluxed for 5.5 h . The solvent was removed and the residue crystallised from methanol to give the hydrochloride methiodide (0.5 g), m.p. $235-236{ }^{\circ} \mathrm{C}$.

The double salt (0.5 g) was reduced with sodium borohydride (excess) in methanol (50 ml) for 5 min at room temperature. The mixture was diluted with water and extracted with ethyl acetate to give a mixture (263 mg), of which a sample (30 mg) was separated by p.l.c. [$\mathrm{MeOH}-$ $\left.\mathrm{CHCl}_{3}(4: 1)\right]$, to give the alcohol (15f) (6 mg) and the ketone (15 e) (12 mg), both as gums.

The alcohol had $\lambda_{\text {max }} 275$ (sh), 282 , and 291 nm ; $\nu_{\text {max }}$. $3460 \mathrm{~s} \mathrm{~cm}^{-1}$; $\tau 1.25(1 \mathrm{H}$, br s, NH), $4.10(1 \mathrm{H}, \mathrm{m}, \mathrm{HC}=\mathrm{C})$, $4.60(1 \mathrm{H}, \mathrm{br}$ s, $\mathrm{C} H \mathrm{OH}), 6.25$ and $6.90(2 \mathrm{H}, 2 \times \mathrm{d}, J 12 \mathrm{~Hz}$, $\mathrm{CH}_{2} \mathrm{NMe}_{2}$), 7.72 (3 H , s, piperideine NMe), and $7.80(6 \mathrm{H}, \mathrm{s}$, NMe_{2}) ; m/e 299 ($3 \%, M^{+}$), 281 (20), 254 (14), 253 (18), 236 (22), 210 (12), 195 (12), 194 (29), 193 (19), 180 (14), 167 (15), 158 (42), 144 (12), 130 (39), 96 (100), 94 (35), and 58 (99) (Found: $M^{+}, 299.1996 . \quad \mathrm{C}_{18} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}$ requires $M, 299.1998$).

The ketone had $\lambda_{\text {max. }} 250,278$ (sh), and $314 \mathrm{~nm}(\log \varepsilon 3.88$, 3.80 and 3.65) ; $\nu_{\text {max }} 3420 \mathrm{~s}$ and $1620 \mathrm{~s} \mathrm{~cm}^{-1} ; 0.56(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, NH), $3.50(1 \mathrm{H}, \mathrm{m}, \mathrm{HC}=\mathrm{C}), 6.12\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{NMe}_{2}\right), 7.53(3 \mathrm{H}, \mathrm{s}$, piperideine NMe), and $7.64\left(6 \mathrm{H}, \mathrm{s}, \mathrm{NMe}_{2}\right)$; $m / e 297(4 \%$, M^{+}), 279 (11), 265 (10), 264 (20), 253 (12), 236 (15), 235 (26), 210 (14), 173 (15), 158 (24), 130 (39), 96 (19), and 58 (100) (Found: $M^{+}, 297.1841 . \mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}$ requires $M, 297.1841$).

One of us (S. J. M.) thanks CONICIT, Venezuela, for a scholarship.

[9/020 Received, 5th January, 1979]

REFERENCES

${ }^{1}$ A. Jackson, N. D. V. Wilson, A. J. Gaskell, and J. A. Joule, J. Chem. Soc. (C), 1969, 2738.
${ }_{2}$ M. S. Allen, A. J. Gaskell, and J. A. Joule, J. Chem. Soc. (C), 1971, 736.
${ }^{3}$ S. J. Martinez and J. A. Joule, Tetrahedron, 1978, 34, 3027,
${ }^{4}$ Part of this work has appeared in a preliminary form: S. J. Martinez and J. A. Joule, J.C.S. Chem. Comm., 1976, 818.
${ }^{5}$ For a review see M. Sainsbury, Synthesis, 1977, 437; for more recent, important contritutions: J. Bergmann and R.

Carlsson, Tetrahedron Letters, 1977, 4663; A. H. Jackson, P. R. Jenkins, and P. V. Shannon, J.C.S. Perkin I, 1977, 1698; D Rouselle, J. Gilbert, and C. Viel, Compt. rend., 1977, C284, 377. ${ }^{6}$ M. Hayat, G. Mathé, E. Chenu, M. M. Janot, P. Potier, A. Cavé, T. Sevenet, C. Kan Fan, J. Poisson, C. Miet, J. Le Men, F. Le Goffic, A. Gouyette, A. Ahond, L. K. Dalton, and T. A. Connors, Biomedicine, 1974, 21, 101.

7 J. B. LePecq, C. Goss, N. Dat-Xuong, and C. Paoletti, Compt. rend., 1973, D277, 2289.
${ }_{8}$ T. Kametani, Y. Ichikawa, T. Suzuki, and K. Fukumoto, Heterocycles, 1974, 2, 171; Tetrahedron, 1974, 20, 3713; J.C.S. Perkin I, 1975, 413.

9 R. Besselièvre, C. Thal, H.-P. Husson, and P. Potier, J.C.S. Chem. Comm., 1975, 90.

10 R. T. Brown, J. A. Joule, and P. G. Sammes, in 'Comprehensive Organic Chemistry,' vol. 4, Pergamon Press, 1978.
11 D. I. C. Scopes, M. S. Allen, G. J. Hignett, N. D. V. Wilson, M. Harris, and J. A. Joule, J.C.S. Perkin I, 1977, 2376; R. J. Sundberg, H. F. Russell, W. V. Ligon, and L.-S. Lin, J. Org. Chem., 1972, 87, 719.

12 G. Grete, H. L. Lee, and M. R. Uskokovic, Helv. Chim. Acta, 1976. 59. 2268; G. Büchi, R. E. Manning, and S. A. Monti, J. Amer. Chem. Soc., 1964, 86, 4631.
${ }^{13}$ W. Schindler, Helv. Chim. Acta, 1957, 40, 2156; H. R. Snyder, and P. L. Cook, J. Amer. Chem. Soc., 1956, 78, 969.
$14 \mathrm{~S} . \mathrm{J}$. Martinez and J. A. Joule, in preparation.
15 Y. Langlois and P. Potier, Tetrahedron, 1975, 31, 419.
${ }^{16}$ E. C. Kornfield, J. Org. Chem., 1951, 16, 806.

[^0]: \dagger Recently we have further shown ${ }^{3}$ that the acyl group, which acidifies the $\mathrm{C}-2$ protons and thus facilitates the isomerisation, is not a necessary condition for achieving isomerisation.

[^1]: * This extremely useful method, first reported ${ }^{15}$ by French workers, is far superior to the alternative, i.e., reacting the aldehyde with the indolyl Grignard reagent.

